The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition

نویسندگان

  • Sabrina Carvalho
  • Wim H. van der Putten
  • W. H. G. Hol
چکیده

Reliable information on soil status and crop health is crucial for detecting and mitigating disasters like pollution or minimizing impact from soil-borne diseases. While infestation with an aggressive soil pathogen can be detected via reflected light spectra, it is unknown to what extent hyperspectral reflectance could be used to detect overall changes in soil biodiversity. We tested the hypotheses that spectra can be used to (1) separate plants growing with microbial communities from different farms; (2) to separate plants growing in different microbial communities due to different land use; and (3) separate plants according to microbial species loss. We measured hyperspectral reflectance patterns of winter wheat plants growing in sterilized soils inoculated with microbial suspensions under controlled conditions. Microbial communities varied due to geographical distance, land use and microbial species loss caused by serial dilution. After 3 months of growth in the presence of microbes from the two different farms plant hyperspectral reflectance patterns differed significantly from each other, while within farms the effects of land use via microbes on plant reflectance spectra were weak. Species loss via dilution on the other hand affected a number of spectral indices for some of the soils. Spectral reflectance can be indicative of differences in microbial communities, with the Renormalized Difference Vegetation Index the most common responding index. Also, a positive correlation was found between the Normalized Difference Vegetation Index and the bacterial species richness, which suggests that plants perform better with higher microbial diversity. There is considerable variation between the soil origins and currently it is not possible yet to make sufficient reliable predictions about the soil microbial community based on the spectral reflectance. We conclude that measuring plant hyperspectral reflectance has potential for detecting changes in microbial communities yet due to its sensitivity high replication is necessary and a strict sampling design to exclude other 'noise' factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Seasonal Soil Microbial Process in Snow-Covered Temperate Ecosystems of Northern China

More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer ...

متن کامل

Changes in soil microbial communities after 10 years of winter wheat cultivation versus fallow in an organic-poor soil in the Loess Plateau of China

Agricultural management methods, such as cultivation or fallowing, have led to significant changes in soil fertility and hence, crop yield. Such changes may have stemmed from changes in soil microbial communities and associated biogeochemical processes. This phenomenon is particularly true in organic-poor soil in the Loess Plateau of China. In this study, we examined three existing soil managem...

متن کامل

Phospholipid fatty acid pro¢les and carbon utilization patterns for analysis of microbial community structure under ¢eld and greenhouse conditions

The description of soil microbial community structure by phospholipid fatty acid (PLFA) profiles is based on the relationship between the phylogeny of microorganisms and their PLFA profiles. Based on this relationship, two community based microbiological measurements, namely, potential C source utilization patterns in Biolog microtiter plates and PLFA profiles were used to examine metabolic fin...

متن کامل

Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing

Climate warming may induce shifts in soil microbial communities possibly altering the long-term carbon mineralization potential of soils. We assessed the response of the bacterial community in a forest soil to experimental soil warming (+4 °C) in the context of seasonal fluctuations. Three experimental plots were sampled in the fourth year of warming in summer and winter and compared to control...

متن کامل

Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil

Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016